
Multithreaded Algorithms for Maximum Matching
in Bipartite Graphs

Ariful Azad1, Mahantesh Halappanavar2, Sivasankaran Rajamanickam3, Erik G. Boman3,

Arif Khan1, and Alex Pothen1,

E-mail: {aazad,khan58,apothen}@purdue.edu, mahantesh.halappanavar@pnnl.gov, and {srajama,egboman}@sandia.gov
1 Purdue University 2 Pacific Northwest National Laboratory 3 Sandia National Laboratories

Abstract—We design, implement, and evaluate algorithms for
computing a matching of maximum cardinality in a bipartite
graph on multicore and massively multithreaded computers.
As computers with larger numbers of slower cores dominate
the commodity processor market, the design of multithreaded
algorithms to solve large matching problems becomes a necessity.
Recent work on serial algorithms for the matching problem has
shown that their performance is sensitive to the order in which
the vertices are processed for matching. In a multithreaded envi-
ronment, imposing a serial order in which vertices are considered
for matching would lead to loss of concurrency and performance.
But this raises the question: Would parallel matching algorithms
on multithreaded machines improve performance over a serial
algorithm?

We answer this question in the affirmative. We report efficient
multithreaded implementations of three classes of algorithms
based on their manner of searching for augmenting paths:
breadth-first-search, depth-first-search, and a combination of
both. The Karp-Sipser initialization algorithm is used to make
the parallel algorithms practical. We report extensive results
and insights using three shared-memory platforms (a 48-core
AMD Opteron, a 32-core Intel Nehalem, and a 128-processor
Cray XMT) on a representative set of real-world and synthetic
graphs. To the best of our knowledge, this is the first study of
augmentation-based parallel algorithms for bipartite cardinality
matching that demonstrates good speedups on multithreaded
shared memory multiprocessors.

I. INTRODUCTION

We design, implement, and evaluate five parallel algorithms

for computing a matching of maximum cardinality in a bipar-

tite graph on multicore and massively multithreaded comput-

ers. As multicore machines dominate the commodity proces-

sor market, and the size of problems continue to increase,

there is need for parallel algorithms for solving important

combinatorial problems such as matching in graphs. However,

achieving good performance and speedup on combinatorial

problems is a challenge due to the large number of data

accesses relative to computation, the poor locality of the

data accesses, irregular nature of the concurrency available,

and fine-grained synchronization required. An earlier study

on parallel (weighted) matching algorithms [1] reported poor

speedups, but said ideal platforms for such algorithms would

have “relatively few numbers of powerful processors, support

for block transfers, lots of memory, and a high processor-

memory bandwidth to this memory”. We show that good

speedups are achievable on emerging multicore machines via

shared memory multithreaded algorithms that are designed

here.

Matching has several applications in computer science,

scientific computing, bioinformatics, information science, and

other areas. Our study of bipartite maximum matching is

motivated by applications to solving sparse systems of linear

equations, computing a decomposition known as the block-

triangular form (BTF) of a matrix [2], and aligning graphs or

networks.

The rest of this paper is organized as follows. In Section II

we describe three classes of parallel algorithms for computing

maximum matchings in bipartite graphs, and the initialization

algorithms used in this context. A short section on related work

is included in Section III. The next Section IV describes the

three machines we implement our parallel algorithms on. The

final Section V describes an extensive set of computational

experiments and results on a test set of sixteen problems.

Our major contributions include the following: To the best

of our knowledge, this is the first work to provide speedups for

(cardinality) matching algorithms on multithreaded platforms;

this is the first description of three classes of augmentation-

path based multithreaded parallel matching algorithms; this is

also the first description of a multithreaded Karp-Sipser match-

ing initialization algorithm, which computes maximum or

close to maximum matchings on many problems; we provide

insights by comparing the different algorithm classes across

multithreaded architectures and input graph characteristics;

and from a study of a massively multithreaded multiprocessor,

we are able to provide insight into performance on newly

emerging architectures.

II. ALGORITHMS FOR MAXIMUM MATCHING IN

BIPARTITE GRAPHS

In this section we describe five parallel algorithms for

computing maximum cardinality matchings in bipartite graphs.

All of them compute matchings by finding at each iteration

of the algorithm a set of vertex-disjoint augmenting paths in

parallel. They differ in the nature of the set of augmenting

paths, how the augmenting paths are computed, and what

graph is used to compute the augmenting paths. We provide

descriptions of two parallel algorithms in some detail, and

briefly sketch how the other algorithms are related to them.

We need some definitions before we can describe the

algorithms. Given a graph G = (V,E), a matching M ⊆ E
is a set of edges such that no two edges in M are incident on

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.82

860

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.82

860

the same vertex. The maximum matching problem is one of

maximizing the number of edges in M . In this paper, we focus

on matchings in bipartite graphs, G = (X ∪ Y,E), where the

vertex set V = X ∪ Y is partitioned into two disjoint sets

such that every edge connects a vertex in X to a vertex in

Y . We denote |V | by n and |E| by m. Given a matching

M in a bipartite graph G = (V,E), an edge is matched if it

belongs to M , and unmatched otherwise. Similarly, a vertex is

matched if it is the endpoint of a matched edge, and unmatched

otherwise. An alternating path in G with respect to a matching

is a path whose edges are alternately matched and unmatched.

An augmenting path is an alternating path which begins and

ends with unmatched edges. By exchanging the matched and

unmatched edges on this path, we can increase the size of the

matching by one. We refer the reader to a book on matching

algorithms [3] for additional background on matching.

The first algorithm we describe, Parallel Pothen-Fan (PPF+),

is derived from a serial algorithm with O(nm) time com-

plexity proposed and implemented in 1990 by Pothen and

Fan [2], which is currently among the best practical serial

algorithms for maximum matching. The second algorithm,

Parallel Hopcroft-Karp (PHK), is based on a serial algorithm

proposed by Hopcroft and Karp [4] in 1973, with asymptotic

time complexity O(n1/2m). In the next two subsections we

describe five parallel algorithms for finding a maximal set of

vertex-disjoint augmenting paths using DFS or BFS or both.

These algorithms are listed in Table I, where we also include

two initialization algorithms (Greedy and Karp-Sipser) that are

used to make the exact matching algorithms faster.

Class Parallel Algorithms Serial
Complexity

Vertex-disjoint DFS (PDDFS) O(nm)
DFS based Pothen-Fan (DFS with lookahead) (PPF+) O(nm)

BFS based Vertex-disjoint BFS (PDBFS) O(nm)

BFS and DFS Hopcroft-Karp (PHK) O(
√
nm)

based Relaxed Hopcroft-Karp (PRHK) O(
√
nm)

Greedy Maximal (PG) O(m)
1/2-approx Karp-Sipser (PKS) O(m)

TABLE I
SUMMARY OF ALGORITHMS IMPLEMENTED.

We point out that the graph searches for augmenting paths

have a structure different from the usual graph searches: if

the search is begun from an unmatched vertex in X , when a

matched vertex v ∈ Y is reached in a search, the only vertex

we reach from v is the mate of v, the vertex matched to v.

The search for all neighbors continues from the mate, which

is again a vertex in X .

A. DFS-based Algorithms

In this subsection, we describe the PPF+ algorithm, whose

pseudo-code is provided in Algorithm 1. The algorithm begins

with an initial matching obtained from an initialization algo-

rithm that will be discussed in a following subsection. The

algorithm makes use of DFS with lookahead to compute, at

each iteration, a maximal set of vertex-disjoint augmenting

paths. (A maximal set with respect to a property is one to

which we cannot add elements and maintain the property;

it is not necessarily a set of maximum cardinality with the

property.) A maximal set of vertex-disjoint augmenting paths

can be discovered in O(m) time by doing DFS’s from each

unmatched vertex in the set X (or Y), and the matching can

be augmented by several edges at a time.

The idea of the lookahead mechanism in DFS is to search

for an unmatched vertex in the adjacency list of a vertex u
being searched before proceeding to continue the DFS from

one of u’s children. If the lookahead discovers an unmatched

vertex, then we obtain an augmenting path and can terminate

the DFS. If it is not found, the lookahead does not add signif-

icantly to the cost of the DFS, since it can be implemented in

O(m) time for the entire algorithm. Intuitively, lookahead is

doing one level of BFS from a vertex before continuing with

the DFS. In practice, Pothen and Fan found that lookahead

helps a DFS-based algorithm finds shorter augmenting paths

faster, and led to a serial algorithm for matching that was

practically faster than the Hopcroft-Karp algorithm, in spite

of the latter’s superior asymptotic time complexity.

We call each iteration of repeat until block in Algorithm 1

a phase of the algorithm. Each phase is executed in parallel

by spawning a set of threads. Each thread begins a DFS

with lookahead from a currently unmatched vertex to search

for an augmenting path. As each augmenting path is found,

each thread augments the current matching, and then proceeds

to search for an augmenting path from the next available

unmatched vertex in the phase. The augmenting paths found

in a phase need to be vertex-disjoint so that the matching

at the beginning of a phase can be augmented using all of

them. One way to enforce the vertex-disjointedness constraint

is to let all threads do their DFS’s without synchronization

and synchronize when we update the matching. This could

cause many of the augmenting paths to be discarded since after

augmentation by one of the paths, the matching changes, and

the other augmenting paths might no longer remain augment-

ing with respect to the current matching. The discarded work

causes the total work in the parallel version to be significantly

greater than in the serial version. Thus, a better approach is

to make sure that independent DFS traversals in an iteration

do not visit the same vertices, which is accomplished by

a thread-safe implementation of DFS with lookahead that

guarantees the vertex-disjoint property. While each DFS is

inherently sequential, there are many DFS traversals that can

be performed simultaneously in parallel.

From one iteration to the next, the direction in which

the adjacency list is searched for unmatched vertices can be

switched from the beginning of the list to the end of the list,

and vice versa. Duff et al. [5] call this fairness, and found that

this enhancement leads to faster execution times. In the PPF+

algorithm we have employed fairness.

Algorithm 2 describes the pseudo-code for the multi-

threaded DFS with lookahead, DFS-LA-TS. The algorithm has

861861

two steps, a lookahead step, and a DFS step.

The lookahead step makes uses of a pointer lookahead[u]
to the next unseen vertex in the adjacency list of u. The

lookahead pointer ensures that the entire adjacency list of u is

scanned only once in all the phases during the lookahead step.

The for all loop (line 2) searches the unscanned vertices in the

adjacency list of the vertex u for an unmatched vertex. If it

finds such a vertex, the algorithm returns the unmatched vertex

found. If all vertices in the adjacency set of u are matched,

then the algorithm proceeds to the DFS step, by executing

the second for all loop (line 7), and in that loop, making a

recursive call to the algorithm.

The vertex-disjoint property of the set of augmenting paths

is achieved by using atomic memory operations for updating

the entry for each vertex in a visited array. This ensures that

only the first thread to reach a vertex can use it in an aug-

menting path. As a generic operator Atomic_Fetch_Add
performs the requested addition operation in a thread-safe

(atomic) manner, and returns the original value prior to the

requested arithmetic operation. The operator ensures that only

one thread reads the original value of 0, thus indicating that

this is the first thread to read it; all other threads will see a

nonzero value, which indicates that the variable has already

been accessed by another thread.

Even though DFS-LA-TS is expressed as a recursive al-

gorithm for brevity in describing it here, we use a stack
mechanism (an array of size at most n, where n is the number

of vertices) within each thread to implement the DFS. Note

that in spite of the stack being private to each thread we do not

require an array of size n for each thread. In any phase of the

matching algorithm, no vertex will get visited more than once,

and so it cannot be in the stack of multiple threads. The amount

of memory required for the stack of all the threads is at most n.

We can resize our stack dynamically to achieve this. We should

note that when memory is not a bottleneck with a sufficiently

small number of threads, the implementation with a stack of

size n for each thread does perform better and we use this for

our performance results. The lookahead is implemented with

an array of size O(n). The cost of the lookahead is O(m)
for the entire algorithm as in the serial case. We maintain the

maximum matching as an array of size n. As the paths are

vertex disjoint, we can augment the matching in parallel as no

two threads will touch the same entries of the matching array.

The parallel disjoint DFS (PDDFS) matching algorithm is

similar to the PPF+ algorithm, but it does not make use of the

lookahead mechanism in the latter. In each phase of the PDFS

algorithm, we do a a DFS traversal from each unmatched

vertex and enforce the vertex-disjoint property of augmenting

paths as in the PPF+ algorithm. The call to DFS-LA-TS in the

PPF+ algorithm is replaced here by DFS-TS. The pseudo-code

for DFS-TS is presented in Algorithm 3.

B. BFS-based Algorithms

The Hopcroft-Karp algorithm [4] finds a maximal set of

shortest vertex-disjoint augmenting paths and augments along

each path simultaneously. They showed that by doing so, the

number of augmentation phases could be bounded by O(n1/2)
thereby providing faster asymptotic time complexity than an

algorithm that augments the matching by one augmenting path

at a time. The other major difference is that the Hopcroft-Karp

(HK) algorithm uses a breadth-first search (BFS) to construct

a layered graph, and the maximal set of augmenting paths are

found within this layered graph. The BFS stops at the first level

where an unmatched vertex is discovered, as we are looking

for shortest augmenting paths. The BFS does not return the

augmenting paths, instead it returns the layered graph. In a

second step, the HK algorithm uses a vertex disjoint DFS

traversal on the layered graph from all the unmatched vertices

in the last level of the BFS to find the maximal set of shortest

length vertex-disjoint augmenting paths.

The layered graph is defined as follows. Let M be a

current matching in a bipartite graph G(X ∪ Y,E), and let

X0 ⊆ X and Y0 ⊆ X be the set of unmatched vertices. The

layered graph LG(L,ELG,K) with respect to a matching M
is a subgraph of G whose vertex set is arranged into levels

L0, L1, ...LK , with L0 = X0; LK ⊆ Y0. The level L1 is the

set of vertices in Y adjacent to vertices in L0; if there are

unmatched vertices in L1, then K = 1. If not, L2 is the set

of vertices in X that are matched to vertices in L1. More

generally, for even i, Li consists of vertices in X matched to

vertices in Li−1; for odd i, Li consists of all vertices in Y
adjacent to vertices in Li−1 that do not belong to earlier levels.

In the last layer LK (K is odd, and these vertices belong to

Y) we need keep only the unmatched vertices since we use

the layered graph to find augmenting paths beginning from

vertices in LK . The edges in the layered graph, ELG, join a

vertex in one layer to a vertex in the next layer; other edges

of G can be discarded.

The parallel Hopcroft-Karp (PHK) algorithm is described

in Algorithm 4. It first constructs the layered graph in parallel

by simultaneous BFS’s from the unmatched vertices in one

side (the vertex set X here). The details of this construction

will be discussed later. In the second step, it uses Algorithm

3 to do parallel disjoint DFS searches from the unmatched

vertices in the last layer of the layered graph to find vertex-

disjoint augmenting paths. As before, we call each iteration of

the parallel repeat-until block a phase of the PHK algorithm.

Since the augmenting paths are vertex disjoint, the matching

at the beginning of a phase can be augmented by all of the

augmenting paths discovered during this phase.

The parallel BFS-based layered graph construction is de-

scribed in Algorithm 5. It constructs the layered graph two

levels at a time. The next level Lk+1 consists of all vertices

in Y not belonging to earlier levels that can be reached

from vertices in level Lk. If there is an unmatched vertex in

level Lk+1, we are done. Otherwise, the following level Lk+2

consists of all vertices in X that are matched to vertices in

Lk+1.

Each thread picks a vertex u in the current level Lk and

assigns its neighbors to the level Lk+1 and the vertices

matched to the latter to the level Lk+2. Each thread creates

its local list of vertices in the two succeeding levels. Once all

862862

threads create their local lists, they are concatenated to obtain

the levels Lk+1 and Lk+2. Then the threads synchronize, and

can begin to construct the next two levels.

As before, we use atomic memory operations in our parallel

layer construction algorithm (Algorithm 5) to ensure that each

vertex is added to only one of the local lists of the levels.

We do not need any synchronization while adding a vertex

or the corresponding edge to the layered graph. There is one

synchronization point per pair of levels in the layered graph

in addition to the atomic operations to mark the visited array.

We have chosen to construct the layered graph explicitly in

our Hopcoft-Karp algorithms, although since the work of Duff

and Wiberg on serial matching algorithms, others have chosen

to work with an implicitly defined layered graph that uses

the original graph data structures. The explicit construction is

more expensive than an implicit representation of the layered

graph, but the explicit layered graph speeds up the search for

augmenting paths by DFS. We have compared the Hopcoft-

Karp algorithms here with others that work with an implicitly

defined layered graph, and found that their relative perfor-

mance is problem-dependent, so there was no clear winner

among the two strategies.

We have implemented two additional parallel BFS-based

algorithms. One of them is Parallel Relaxed Hopcroft-Karp

(PRHK), which continues to construct the layered graph to

levels beyond the shortest augmenting path length. Beyond

augmentation by a maximal set of vertex-disjoint shortest

augmenting paths, we search for longer augmenting paths from

unmatched vertices in the relaxed layered graph and use these

paths to augment the matching. Another algorithm is based on

Parallel Disjoint BFS (PDBFS), which does not use a layered

graph construction at all, but performs vertex-disjoint BFS’s

in the original graph from unmatched vertices in X to find

unmatched vertices in Y , and augments the matching directly

using these augmenting paths.

C. Parallel Initialization Algorithms

Many iterations of one of the parallel algorithms described

earlier might be needed to find a matching of maximum

cardinality. The number of iterations needed can be reduced

substantially by using an initialization algorithm to compute an

initial matching in O(m) time. In many cases, the initialization

algorithms are good enough to find all or a large fraction

of the maximum cardinality of a matching. Langguth et
al. [6] experimented with various initialization algorithms, and

reported that the Karp-Sipser algorithm was the best performer

for quality and fast execution. Duff et al. [5] also found

that this algorithm is among the best initialization algorithms

in terms of the cardinality of the matchings found. An ini-

tialization algorithm that finds a larger cardinality matching,

usually though not always, leads to faster computation of the

maximum cardinality matching.

The Parallel Karp-Sipser algorithm is described in Algo-

rithm 6. All vertices with initial degree one in the set X are

stored in Q1 and processed first in parallel. Degrees of the

vertices adjacent to matched Y vertices are updated, and if

a new vertex of current degree one in X is discovered, it is

processed immediately. After processing Q1 other unmatched

vertices in X from queue Q∗ are processed in parallel. The

degree update and immediate processing of newly discovered

degree one vertices are done synchronously and described in

a separate routine MATCHANDUPDATE in Algorithm 7.

Note that, before a degree one vertex u is discovered in

dynamic degree update by a thread, a higher degree vertex v
can be picked by another thread. Hence the processing order

of the parallel implementation can deviate from that of a serial

implementation, and consequently when the number of threads

increases, the matching size is expected to decrease.

We have also implemented a Greedy initial matching algo-

rithm that finds a maximal matching (i.e., a matching such

that its size cannot be increased any further without changing

some of its matched edges to unmatched edges). The Parallel

Greedy algorithm examines, in parallel, (unmatched) vertices

u belonging to one of the vertex sets X , and does an atomic

fetch and add operation to lock an unmatched vertex v ∈ Y
in u’s adjacency list, and then matches the two vertices u and

v. We omit a detailed description.

III. RELATED WORK

The literature on parallel matching algorithms spans several

models of parallel computers: parallel random access machine

(PRAM), coarse grained multicomputer (CGM), bulk syn-

chronous parallel (BSP), and the massively parallel computer

(MPP). However, much of the work is theoretical in nature,

e.g., Karpinski and Rytter [7].

Considerable interest in parallel algorithms has been ob-

served in recent time with work on approximation as well

as optimal algorithms on shared and distributed memory

platforms. Langguth et al. [8] describe their work on paral-

lelizing the Push-Relabel algorithm [9] for bipartite maximum

matching on a distributed-memory platform. Although they

conclude that strong scaling or speedup is difficult to achieve,

good parallel performance justifies the effort to parallelize for

memory-scaling reasons. Patwary et al. [10] have implemented

a parallel Karp-Sipser algorithm on a distributed memory

machine using an edge partitioning of the graph rather than

a vertex partitioning. Setubal [11] has implemented the push-

relabel algorithm on a shared memory machine obtaining a

speed-up of two to three on twelve processors.

Parallel algorithms for weighted matching have also been

studied. There is an extensive literature on parallelization

of auction algorithms [12], [13], [14]. A general conclusion

from the work on auction algorithms is that they are suitable

for large dense problems. Recently Sathe and Schenk have

reported speedups of 32 on a 1024 processor Cray XE6 for a

parallel auction algorithm [15].

Several experimental results were presented as part of the

first DIMACS Implementation Challenge held in 1990—1991.

The results showed performance of augmenting-path based

as well as auction based algorithms on platforms such as

WaveTracer Zephyr, MasPar MP-1, and Silicon Graphics IRIS

4D/340 DVX. Of particular interest are the results of Brady et

863863

al. [1], who compare the performance of auction algorithms on

the different parallel architectures mentioned above. Brady et
al. describe their results as a “little short of disastrous”.

However, we believe their conclusions on an “ideal” platform

for auction-like algorithms still hold: “relatively few numbers

of powerful processors, support for block transfers, lots of

memory and a high processor-memory bandwidth to this

memory”. After two decades, modern multicore processors

feature some of these characteristics.

Unlike optimal algorithms, approximation algorithms for

matching are more amenable to parallelization. In partic-

ular, half-approximation algorithms for weighted matching

have been explored by Manne and Bisseling [16], Halap-

panavar [17], and Çatalyürek et al. [18] on distributed-memory

platforms. Speedups on up to 16, 000 processors for a class of

graphs was demonstrated by Catalyürek et al. Recently, Halap-

panavar et al. [19] explored the half-approximation algorithm

on several multithreaded platforms including general purpose

graphics processing units. They demonstrated good speedups

for several classes of graphs.

In designing our parallel algorithms we have started from

the best implementations of serial algorithms. From this per-

spective, Duff et al. [5] is the closest to our work. In addition

to introducing a new variant algorithm, Duff et al. conducted

an extensive empirical study of bipartite maximum matching

algorithms in serial. They compared eight algorithms based

on augmenting paths, ranging from simple BFS and DFS

based algorithms to sophisticated Pothen-Fan (PF), Hopcroft-

Karp (HK) and their variants. They used three different

methods for greedy initializations: simple greedy, Karp-Sipser,

and minimum degree. They implemented all these algorithms

consistently in a single library. Duff et al. found that overall PF

with fairness (PF+) and Hopcoft-Karp with the Duff-Wiberg

modification (HKDW) were the two best methods. Duff et al.
also studied the effect of random permutations of the input,

and observed that this may significantly impact performance.

They point out in the conclusion section that this poses a great

challenge for parallel matching algorithms, since parallel tasks

may be executed in non-deterministic order.

IV. EXPERIMENTAL PLATFORMS

The three platforms selected for this study—Opteron, Ne-

halem and XMT—represent two state-of-the-art multicore

architectures as well as a non-traditional massively mul-

tithreaded architecture. Together, the platforms represent a

broad spectrum of capabilities with respect to clock speeds,

ranging from 0.5 GHz (XMT) to about 2.6 GHz (Nehalem);

hardware multithreading, ranging from none (Opteron) to

128 threads per processor (XMT); cache hierarchies, ranging

from none (XMT) to three levels (Nehalem and Opteron);

and memory interconnects, ranging from DDR1 (XMT) to

DDR3 (Nehalem). The XMT is cache-less, and uses massive

multithreading to tolerate the large latency to memory by

having some threads that are ready to execute while others

wait for outstanding memory accesses. The Nehalem and the

Opteron depend on moderate multithreading, cache hierarchies

and lower latencies to memory.

A few key features of the three platforms and references to

detailed information are provided in Table II. For the Opteron,

while the theoretical peak bandwidth to memory is 42.7 GB/s,

speeds in practice are limited to 28.8 GB/s due to the speed

of Northbridge links. The base clock frequency of Nehalem is

2.266 GHz, and the maximum turbo frequency is 2.666 GHz.

The parallel algorithms were implemented on the Nehalem

and the Opteron using OpenMP primitives, and on the Cray

XMT using pragmas specific to the XMT. Additional imple-

mentation details will be mentioned in the next section.

V. EXPERIMENTAL RESULTS

We present experimental results in this section on a set of

test problems whose sizes, degree distributions, and descrip-

tions are included in Table III. The problems are divided into

two classes: unsymmetric and rectangular problems form the

first subset of eight problems, and the remaining problems are

symmetric (these are separated by some vertical space). The

problems are taken from various sources: the Florida sparse

matrix collection, the RMAT graph generator [23] (ER22,

good22, bad22), and a graph generated in a network alignment

problem by a belief propagation algorithm (scbp). We begin

with a discussion of the performance of greedy initialization

algorithms. Next we provide experimental results on sensi-

tivity of the performance to the non-determinism in parallel

executions, and show that the variance in runtime, while large

for some algorithms, is small relative to the speedups that

we observe to make experimental comparisons meaningful.

We then proceed to present strong scaling results for the best

performing algorithms, comparing their performance across

algorithms, problem classes, and architectures. We discuss the

moderately multithreaded Opteron and Nehalem first, before

discussing results on the massively multithreaded XMT.

We now consider some details that are relevant for multi-

threaded implementations. First, in the DFS-based matching

algorithms (which search for multiple augmenting paths in

parallel), we used dynamic scheduling for load balancing the

threads. In BFS-based matching algorithms (which compute

vertices in the layered graph two levels at a time), we used

static or block-dynamic scheduling for low overhead costs.

The Karp-Sipser initialization algorithm performed best with

dynamic scheduling, while the Greedy algorithm did best

with static scheduling. Second, threads can be pinned to

specified cores to prevent overheads from thread migration.

When there are eight cores on a socket, compact thread

pinning (filling threads one socket after another) provides good

scaling for up to eight threads, whereas scatter thread-pinning

(distributing threads across sockets in a round-robin manner)

is better for a moderate numbers (up to twelve) of threads.

For larger numbers of threads, both perform equally well.

We used compact thread pinning in our experiments. Third,

two of the machines have non-uniform memory access costs

since physically separate memory banks are associated with

each socket. Interleaved memory allocation (memory allocated

864864

Platform: Opteron 6176 SE Xeon X7560 ThreadStorm-2
(Opteron) (Nehalem) (XMT)

Processing Units
Clock (GHz) 2.30 2.266 0.5
Sockets 4 4 128
Cores/socket 12 8 1
Threads/core 1 2 128
Total threads 48 64 16,384

Memory System
L1 (KB)/core:Inst/Data 64/64 32/32 –
L2 (KB)/core 512 256 –
L3 (MB)/socket 12 24 –
Memory/socket (GB) 64 64 8
Peak Bandwidth (GB/s) 42.7 (DDR3) 34.1 (DDR3) 86.4 (DDR1)

per socket per socket per system
Software

C Compiler GCC 4.1.2 Intel 11.1 Cray C 6.5.0
Flags -O3 -fast -par
Reference [20] [21] [22]

TABLE II
SUMMARY OF ARCHITECTURAL FEATURES OF PLATFORMS USED IN THIS PAPER.

evenly across sockets) yields faster run times for larger num-

bers of threads, although this can slow down performance on

one or two threads.

A. Quality and Impact of Initialization Algorithms

We measure the quality of a matching M obtained by an

initialization algorithm by the ratio of the cardinality of the

matching |M | to the cardinality of a maximum matching in

that graph. A high quality initialization algorithm reduces

the work that an exact matching algorithm needs to do,

and usually, but not always, reduces the overall runtime.

Initialization has an even larger impact on the run time of

a parallel algorithm, by reducing the number of iterations that

an exact matching algorithm needs to perform.

The quality of the Karp-Sipser initialization is better than

the Greedy initialization for all the test problems we have

considered. We show results for a representative example,

ER22, in Figure 1. Karp-Sipser computes matchings that are

better than Greedy by 6% for this graph. Since the graph has

random connectivity, it has poor spatial and temporal cache

locality in the matching computation. The small difference in

the quality of the matching decreases run times for the PRHK

algorithm (the fastest among our algorithms for this problem)

by a factor of four or more, as can be seen from the right

figure in Fig. 1. However, for very sparse graphs with good

spatial locality, the decrease in run times is not as significant.

An example is the USA-Roadmap problem, where the Karp-

Sipser algorithm obtains an initial matching with cardinality

that is 15% greater than the Greedy algorithm, but where the

improvement in run times is only a factor of 1.5 for the PPF+

algorithm on an Opteron (again, this is the fastest algorithm

for this problem).

Fig. 1 also demonstrates the influence of concurrency on

the quality of matchings. The number of threads executing on

the XMT is several orders larger than those on AMD, and

therefore, we observe that the quality of matching computed

on the XMT is lower than that on the AMD for the Karp-Sipser

algorithm. Note that we request 100 threads per processor on

the XMT, and the runtime determines the number of threads

that get allocated. We expect (and observe) twenty to hundred

threads executing concurrently over the entire execution in a

dynamic fashion. When the number of threads exceeds the

number of vertices with current degree one, then vertices of

higher degree are matched at random, and consequently the

cardinality of matching decreases. The difference in quality is

more pronounced for the Karp-Sipser algorithm than for the

Greedy matching algorithm.

For all the input graphs in our study, Greedy initialization is

faster than the Karp-Sipser algorithm by a factor of two to four.

But the total runtime of an exact matching algorithm when

initialized with the Karp-Sipser algorithm is almost always

smaller than the combination with Greedy initialization due to

the improved quality that Karp-Sipser provides. This agrees

with earlier findings for initializations in serial matching

algorithms [5], [6]. Hence, from now on, we consider only the

Karp-Sipser initialization with exact matching algorithms. For

many problems, after initialization with Karp-Sipser, only few

unmatched vertices remain to match with an exact matching

algorithm (Karp-Sipser obtained a maximum matching for

16 out of 100 problems in the test set of [5]). In order to

enable a meaningful comparison of exact algorithms, we have

chosen input graphs such that after greedy initialization a

significant number of unmatched vertices still remains for an

exact algorithm to match.

B. Sensitivity of Runtimes

By randomly permuting the vertices, Duff et al. [5] have

shown that there is a significant variation in the runtimes

of serial matching algorithms when unmatched vertices are

processed in different orders. This raises a serious issue

865865

Degree
Name |X| |Y | |E| Max. Avg. Std. Dev. Description
amazon0312 400,727 400,727 3,200,440 10 7.99 3.07 Amazon product co-purchasing network
hamrle3 1,447,360 1,447,360 5,514,242 6 3.81 1.55 Circuit simulation matrix
cit-patents 3,774,768 3,774,768 16,518,948 770 4.38 7.78 Citation network among US Patents
scbp 154,974 342,684 20,883,500 38,636 135 441 Network alignment of Library of Congress terms
GL7d19 1,911,130 1,955,309 37,322,725 121 19.5 2.85 Combinatorial problems
ER22 (RMAT) 4,199,304 4,199,304 67,080,546 59 16.0 10.1 Erdos-Renyi Random graph
good22 (RMAT) 4,199,304 4,199,304 67,080,546 965 16.0 23.8 Random power law graph
bad22 (RMAT) 4,199,304 4,199,304 67,080,546 26,832 15.8 87.3 Random power law graph with wider degree distribution

roadNet-CA 1,971,281 1,971,281 5,533,214 12 2.81 1.01 California street networks
kkt power 2,063,494 2,063,494 12,771,361 96 7.08 7.40 Optimal power flow, nonlinear optimization (KKT)
hugetrace-0000 4,588,484 4,588,484 13,758,266 3 2.99 0.02 Frames from 2D Dynamic Simulations
as-skitter 1,696,415 1,696,415 22,190,596 35,455 13.1 137 Internet topology graph
coPapersDBLP 540,486 540,486 30,491,458 3,299 56.4 66.2 Citation Networks in DBLP
hugetrace-0020 16,002,413 16,002,413 47,997,626 3 2.99 0.02 Frames from 2D Dynamic Simulations
USA-Roadmap 23,947,347 23,947,347 57,708,624 9 2.41 0.93 USA street networks
delaunay n24 16,777,316 16,777,316 100,663,202 26 6.00 1.34 Delaunay triangulations of random points in the plane

TABLE III
DESCRIPTION OF A SET OF 16 TEST PROBLEMS FROM THE UNIVERSITY OF FLORIDA COLLECTION AND OTHER SOURCES. THE FIRST EIGHT PROBLEMS

ARE NONSYMMETRIC OR RECTANGULAR; THE OTHERS ARE SYMMETRIC.

92

94

96

98

100

102

1 2 4 8 16 32 48 64

%
 o

f m
ax

im
um

 M
at

ch
in

g

Number of processing units

PKS (Opteron) PKS (XMT)
PG (Opteron) PG (XMT)

16

32

64

128

256

512

1024

2048

4096

1 2 4 8 16 32 48

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

PG + PRHK
PKS + PRHK

Fig. 1. Quality of Initial Matchings and Impact on Runtimes: The subfigure on the left shows the fraction of the maximum matching computed in the
initialization step by the Greedy (PG) and Karp-Sipser (PKS) algorithms. Processing units are cores (one thread per core) for AMD Opteron and number of
processors (20 to 100 interleaved threads per processor) for Cray XMT. The subfigure on the right shows the run time of the Relaxed Hopcroft-Karp algorithm
on an AMD Opteron. Both figures are for the random graph ER22 generated from RMAT.

for parallel algorithms: In a multithreaded context, different

executions of an algorithm are likely to process vertices to

match in different orders. We cannot assign threads to specific

vertices or impose an order in which threads must execute

without severe loss of concurrency. Hence we conduct an

experiment to determine the variability in run times of our

parallel matching algorithms.

We measure the parallel sensitivity (ψ) of an algorithm as

the ratio of the standard deviation (σ) of runtimes from N
runs, to the mean of runtimes (μ): ψ = σ

μ × 100. We report

the parallel sensitivity of three algorithms on Opteron for three

input graphs in Fig. 2, based on ten repetitions of the same

algorithm for the same number of threads.

The first observation we make is that the variations in

run times are higher for the DFS-based algorithms (less than

25% for most problems) relative to the BFS-based algorithms

(less than 5% for most problems). In contrast to DFS-based

algorithms, the BFS-based algorithms generally have many

vertices in a level where each thread performs a relatively

small amount of work. Thus, the impact of load imbalance

among the threads is smaller. A second observation we make is

that as the number of threads increases, DFS-based algorithms

become even more sensitive. Load balancing becomes difficult

with a larger number of threads, especially when the tasks

have varying work loads. Third, incorporating fairness into

the PPF+ algorithm makes it faster, but also makes it more

sensitive to non-determinism. This is in contrast with serial

algorithms [5], where fairness had a stabilizing effect. Finally,

we note that the sensitivities are still small relative to the

speedups that we observe, so that parallelization is worth the

effort. In light of these results, for all subsequent experiments

in this paper we report results from the best performing run

from a set of three independent runs. Given a small margin of

variance, we make conclusions by ignoring sensitivity where

866866

relevant, and do not make conclusions when the margin of

difference is small.

C. Scalability of Maximum Matching Algorithms

We experimented with five different maximum matching

algorithms on three different architectures. Initially we discuss

results for the Nehalem and the Opteron processors with

a relatively small number of threads in a system; we will

consider the massively multithreaded Cray XMT towards the

end of this discussion.

We show the scaling of two of the parallel algorithms,

Parallel Pothen-Fan (PPF+) and Parallel Relaxed-HK (PRHK)

algorithms for three problems on the AMD Opteron platform

in Fig. 3. The serial runtimes are from Pothen-Fan with

fairness (PF+) and HKDW algorithms; the latter is a variant

of the Hopcroft-Karp algorithm due to Duff and Wiberg, when

after finding shortest augmenting paths in the layered graph, a

disjoint DFS is done from the remaining unmatched vertices

before the next layered graph is constructed. These results are

obtained from the implementations of Duff et al. [5] of the two

serial algorithms also run on the same platform. We believe

their implementations are among the best open-source, serial

implementations currently available.

We make a number of observations from the data presented

here.

The first observation is that we obtain significant speedups

from the parallel implementations of different matching al-

gorithms. This is demonstrated from the results on three

problems shown in Fig. 3, as well as those that will be

presented soon. We observe nearly linear speedups for the

amazon and cit-patents problems on the Opteron for the

PPF+ algorithm. The number of iterations needed by a DFS-

based algorithm decreases for these problems when there is a

moderate number of threads. We also note that for problems

such as cit-patent, our algorithm on one thread runs faster

than the Duff et al. code; we do not understand the reason for

this at this time.

Our second observation links the performance of algorithms

to the characteristics of input. The relative performance of

DFS-based and BFS-based parallel algorithms is dependent on

the structure of a given problem. For many problems, we see

that DFS-based algorithms are faster and scale better, as can be

seen in results from GL7d19 and cit-patents. For these

problems, the average number of edges traversed in an iteration

to discover vertex-disjoint augmenting-paths is considerably

smaller for DFS than BFS. The amazon problem features

degree distribution characteristics of a scale-free graph, and

here, BFS-based algorithms are faster due to the availability

of a large number of short vertex-disjoint augmenting-paths

that can be identified quickly. For scale-free graphs, when the

number of threads increase, DFS-based algorithms are able to

discover a large number of short vertex-disjoint augmenting-

paths, and these algorithms tend to become as fast as the BFS-

based algorithms.

Our third observation in on the general behavior of different

algorithmic approaches. In general, BFS-based algorithms

require fewer iterations than DFS-based algorithms to compute

a maximum matching. However, BFS-based algorithms have

a greater cost per iteration. This is due to two reasons: one

is that they tend to search more edges in each iteration,

and the second is caused by the finer-grained level-based

synchronization in the algorithm compared to the path-based

synchronization in DFS-based algorithms. Thus, while the

latter run faster on a per-iteration basis, they have to run many

more iterations to complete. The results in Fig. 3 show that

quite often the product of the number of iterations and the

average time per iteration, which is the total time taken by the

algorithm, is in favor of the parallel DFS-based algorithms,

especially when lookahead is employed. However, this is also

influenced by the structure of the graph. We have also noticed

that the number of iterations in a BFS-based algorithm is

relatively independent of the number of threads. In contrast,

for many problems the number of iterations decreases linearly

with increasing number of threads for DFS-based algorithms.

This is because for a large number of threads, DFS is capable

of finding many short vertex-disjoint augmenting-paths much

the same way that BFS does.

D. Comparison Across Different Platforms

We now provide details and observations on performance

across platforms. In Fig. 4, we present scalability of the

PRHK and PPF+ algorithms on the three platforms. On both

Nehalem and Opteron, with a relatively small number of

threads, we obtain good scaling for three graphs with different

characteristics: USA-Roadmap is a sparse graph with good

locality, Copaper-DBLP is a scale-free graph, and ER22 is

a sparse random graph with poor locality characteristics. On

the first of these, the PRHK algorithm runs the fastest on the

XMT, and scales well with increasing number of threads. Note

that the PPF+ algorithm runs faster on Nehalem compared

to Opteron, and is slowest on the XMT for the latter two

problems.

Fig. 5 shows the performance of two DFS-based algorithms

and three BFS-based algorithms on our sixteen test problems,

on 16 processing units of the Opteron and the XMT. Note

that on the Opteron, the DFS-based PPF+ is clearly the fastest

algorithm for this test suite: it is faster than all other algorithms

for 60% of the problems. It is followed by the simpler

PDDFS and PDBFS algorithms, both of which outperform the

Hopcroft-Karp variants.

BFS-based algorithms are more naturally suited to the XMT

architecture, which uses a large number (up to hundred) of

threads per processor to hide the large memory latencies. This

is seen in the performance profiles of four different algorithms

on the Cray XMT for the sixteen test problems in the subfigure

on the right in Fig. 5. The best performing algorithm on the

XMT is the parallel disjoint BFS (PDBFS) algorithm, which is

the best algorithm for 65% of the problems. It is followed by

PPF+, and then the HK variants. In level-synchronized BFS,

there is a large number of vertices in each level that the large

number of threads can process, and BFS does a better job

than DFS in keeping the lengths of augmenting paths. On

867867

0

5

10

15

20

25

30

1 2 4 8 16 32 48

Pa
ra

lle
l S

en
si

tiv
ity

 (%
)

Number of processing units

PPF+ PRHK PHK

(a) roadNet-CA

0

5

10

15

20

25

30

1 2 4 8 16 32 48

Pa
ra

lle
l S

en
si

tiv
ity

 (%
)

Number of processing units

PPF+ PRHK PHK

(b) CopaperDBLP

0

5

10

15

20

25

1 2 4 8 16 32 48

Pa
ra

lle
l S

en
si

tiv
ity

 (%
)

Number of processing units

PPF+ PRHK PHK

(c) ER22

Fig. 2. Sensitivity of maximum matching algorithms: Sensitivity of different maximum matching algorithms with parallel Karp-Sipser initialization; runs
are on Opteron.

0.5

1

2

4

8

16

32

64

128

1 2 4 8 16 32 48

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

PPF+ PRHK
PF+ HKDW

(a) amazon0312

0.125
0.25

0.5
1
2
4
8

16
32
64

128

1 2 4 8 16 32 48

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

PPF+ PRHK
PF+ HKDW

(b) GL7d19

0.5

1

2

4

8

16

32

64

128

1 2 4 8 16 32 48

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

PPF+ PRHK
PF+ HKDW

(c) cit-patents

Fig. 3. Scaling of maximum matching algorithms: The scaling of exact matching algorithms with parallel Karp-Sipser algorithm as an initializer on
Opteron for three problems. Serial runtimes of PF+ and HKDW are from the implementation of Duff et al. [5].

the XMT which has hardware-based synchronization, the costs

of synchronizing the threads at the end of each level is also

relatively small compared to the Nehalem and the Opteron.

The DFS-based algorithms have a much bigger variation in

the lengths of augmenting paths, but each iteration can be

implemented faster than BFS-based algorithms, due to the

relatively lower synchronization costs (at the granularity of

paths rather than levels), and the short augmenting paths that

lookahead helps DFS-based algorithms to find. However, the

last few iterations of a DFS-based algorithm have few vertices

to match, and the augmenting paths now are relatively long,

and such iterations cannot make effective use of the massive

number of threads on the XMT. Consequently, these iterations

serialize on the XMT, and the parallel DFS-based algorithms

perform poorly.

In comparing the performance of the XMT against the

two other architectures, a few other features should be borne

in mind: The XMT can compute matchings in much larger

graphs, which are beyond the memory limitations of the

Nehalem and the Opteron, and the larger problems will yield

better performance on the XMT since they can take better

advantage of the massive multithreading. The XMT has the

slowest clock among these three processors, and the newer

XMT-2 systems with a faster and larger memory system will

potentially yield better relative performance against the other

two architectures.

VI. CONCLUSIONS

We have evaluated the performance of five augmenting path-

based algorithms for computing maximum cardinality match-

ings in bipartite graphs on three multithreaded architectures

across a collection of test graphs with different structures. Our

findings are reasonably consistent with the work of Langguth

et al. [6] and Duff et al. [5] that compared related algorithms

on serial architectures. We find that initialization algorithms

are critical to the performance of matching algorithms, and

that a DFS-based algorithm, PPF+, and a variant of a BFS-

based algorithm, PDBFS, are among the best performers. We

also find that different classes of algorithms perform best

on different classes of architectures. DFS-based algorithms

have a long ‘tail’ when there are a number of iterations

that find few, long, augmenting paths; hence these algorithms

perform poorly on the massively multithreaded Cray XMT,

on which execution serializes at this stage. However, these

868868

4

8

16

32

64

128

256

1 2 4 8 16 32 48 64

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

Intel-Nehalem
AMD-Opteron
Cray-XMT

(a) USA-Roadmap

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 48 64

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

Intel-Nehalem
AMD-Opteron
Cray-XMT

(b) CopaperDBLP

8

16

32

64

128

256

512

1024

2048

1 2 4 8 16 32 48 64

C
om

pu
te

 ti
m

e
in

 se
co

nd
s

Number of processing units

Intel-Nehalem
AMD-Opteron
Cray-XMT

(c) ER22

Fig. 4. Comparing two parallel algorithms on different architectures: Scaling of the PRHK algorithm on the USA-Roadmap graph and the PPF+
algorithm on CopaperDBLP and ER22 graphs, all with parallel Karp-Sipser algorithm as the initializer.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Performance Relative to the Best Algorithm

Fr
ac

tio
n

of
 P

ro
bl

em
s

PDDFS
PPF+
PDBFS
PHK
PRHK

(a) AMD Opteron

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Performance Relative to the Best Algorithm

Fr
ac

tio
n

of
 P

ro
bl

em
s

PPF+
PDBFS
PHK
PRHK

(b) Cray XMT

Fig. 5. Profile of relative performance of different algorithms: The relative performance of different algorithms for all our test problems with respect to
the best algorithm for a given problem.

algorithms run faster on the multicore machines, the Nehalem

and the Opteron, since the tail takes a smaller fraction of the

total execution times due to the faster processor speeds. The

DFS-based algorithms tend to be more sensitive to the non-

determinism from one execution to another, and hence show

greater variation in the run times. Unlike the results reported

by Duff et al. for the serial case, the use of fairness in the

PPF+ algorithm makes it more, not less, sensitive to non-

determinism in the multithreaded environment. However, we

find that this sensitivity is still small relative to the speed-

ups that we observe. For many graphs we obtain nearly linear

speed-ups. Even superlinear speedups are possible, since the

distribution of the number and the lengths of augmenting paths

can vary from one algorithm to another, and can vary also

with the order in which vertices are considered for matching.

Finally, the structure of the graphs influences the performance

of multithreaded algorithms. Scale-free graphs have a large

number of short augmenting paths, and hence BFS-based

algorithms tend to be faster on these problems. Generally,

BFS-based algorithms require fewer iterations than DFS-based

algorithms, but creating the layered graph in a BFS-based

algorithm searches more edges per iteration and has higher

synchronization costs than a DFS-based algorithm.

It should be noted that the serial algorithms we have

compared against are the best performers from a large set

of algorithms developed over the last few decades, with

implementations targeted for high performance. In contrast,

our first-in-class multithreaded parallel implementations have

room for improvement from several optimizations. Among

them is allocating memory to portions of the graph that will be

processed by a thread in a memory module local to the socket

it belongs to. We have also not considered the multithreaded

implementation of a fourth class of algorithms, the push-

relabel algorithm.

ACKNOWLEDGEMENTS

This work was funded by the Center for Adaptive

Super Computing Software - MultiThreaded Architectures

(CASS-MT) at the U.S. Department of Energy’s (DOE)

Pacific Northwest National Laboratory. PNNL is operated

by Battelle Memorial Institute under Contract DE-ACO6-

76RL01830. Funding was also provided by the DOE through

the CSCAPES Institute (grants DE-FC02-08ER25864 and DE-

FC02-06ER2775), and NSF grant CCF-0830645. Sandia Na-

tional Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary

of Lockheed Martin Corporation, for the DOE’s National

Nuclear Security Administration under contract DE-AC04-

869869

94AL85000. We acknowledge fruitful discussions with Florin

Dobrian, Bora Uçar and John Feo.

REFERENCES

[1] M. Brady, K. Jung, H. Nguyen, R. Raghavan, and R. Subramonian,
“The assignment problem on parallel architectures,” Network Flows and
Matching. DIMACS, pp. 469–517, 1993.

[2] A. Pothen and C.-J. Fan, “Computing the block triangular form of
a sparse matrix,” ACM Trans. Math. Softw., vol. 16, pp. 303–324,
December 1990.

[3] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[4] J. Hopcroft and R. Karp, “A n5/2 algorithm for maximum matchings
in bipartite graphs,” SIAM J. Comput., vol. 2, pp. 225–231, 1973.

[5] I. S. Duff, K. Kaya, and B. Uçar, “Design, analysis and implementation
of maximum transversal algorithms,” ACM Transactions on Mathemat-
ical Software, vol. 28, no. 2, pp. 13:1– 13:31, 2011.

[6] J. Langguth, F. Manne, and P. Sanders, “Heuristic initialization for
bipartite matching problems,” Journal of Experimental Algorithmics
(JEA), vol. 15, pp. 1–3, 2010.

[7] M. Karpinski and W. Rytter, Fast Parallel Algorithms for Graph Match-
ing Problems. New York, NY, USA: Oxford University Press, Inc.,
1998.

[8] J. Langguth, M. M. A. Patwary, and F. Manne, “Parallel algorithms for
bipartite matching problems on distributed memory computers,” Parallel
Computing, vol. 37, no. 12, pp. 820–845, 2011.

[9] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum flow
problem,” in Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing, ser. STOC ’86. New York, NY, USA: ACM,
1986, pp. 136–146.

[10] M. A. Patwary, R. Bisseling, and F. Manne, “Parallel greedy graph
matching using an edge partitioning approach,” in Proceedings of the
Fourth International Workshop on High-level Parallel Programming and
Applications. ACM, 2010, pp. 45–54.

[11] J. C. Setubal, “Sequential and parallel experimental results with bipartite
matching algorithms,” University of Campinas, Tech. Rep. IC-96-09,
1996.

[12] D. Bertsekas, “Auction Algorithms for Network Flow Problems: A
Tutorial Introduction,” Computational Optimization and Applications,
vol. 1, no. 1, pp. 7–66, 1992.

[13] D. P. Bertsekas and D. A. Castañon, “Parallel synchronous and asyn-
chronous implementations of the auction algorithm,” Parallel Comput.,
vol. 17, pp. 707–732, September 1991.

[14] L. Buš and P. Tvrdı́k, “Towards auction algorithms for large dense
assignment problems,” Comput. Optim. Appl., vol. 43, pp. 411–436, July
2009.

[15] M. Sathe and O. Schenk, “Computing auction based weighted matchings
in massive graphs,” 2011, talk presented at ICIAM 2011.

[16] F. Manne and R. H. Bisseling, “A parallel approximation algorithm
for the weighted maximum matching problem,” in Proceedings of
the 7th international conference on Parallel processing and applied
mathematics, ser. PPAM’07. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 708–717.

[17] M. Halappanavar, “Algorithms for vertex-weighted matching in graphs,”
Ph.D. dissertation, Old Dominion University, Norfolk, VA, USA, 2009.

[18] Ü. V. Çatalyürek, F. Dobrian, A. H. Gebremedhin, M. Halappanavar,
and A. Pothen, “Distributed-memory parallel algorithms for matching
and coloring,” in IPDPS Workshops, 2011, pp. 1971–1980.

[19] M. Halappanavar, J. Feo, O. Villa, A. Tumeo, and A. Pothen, “Ap-
proximate weighted matching on emerging manycore and multithreaded
architectures,” International Journal of High Performance Computing
Applications (IJHPCA), submitted 2011.

[20] “AMD Opteron 6100 Series Processor,” available at
http://www.amd.com/us/products/embedded/processors/opteron/Pages/
opteron-6100-series.aspx.

[21] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Mem-
ory performance and cache coherency effects on an Intel Nehalem
multiprocessor system,” in PACT ’09: Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation
Techniques. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 261–270.

[22] J. Feo, D. Harper, S. Kahan, and P. Konecny, “Eldorado,” in CF ’05:
Proceedings of the 2nd Conference on Computing Frontiers. New York,
NY, USA: ACM, 2005, pp. 28–34.

[23] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and
algorithms,” ACM Comput. Surv., vol. 38, no. 1, p. 2, 2006.

870870

Algorithm 1 The Parallel Pothen-Fan Algorithm with fairness.

Input: A graph G. Output: A matching M .
1: procedure PPF+(G(X ∪ Y,E))
2: M ← InitMatch(G) � E.g., Karp Sipser
3: Initialize lookahead[i] to the first neighbor of i � For each vertex: i ← 1..n
4: repeat � Each iteration
5: path found ← 0
6: visited[v] ← 0 � For v ∈ Y
7: for all unmatched vertices u ∈ X in parallel do � Look for augmenting paths in parallel
8: P ← DFS-LA-TS(u) � Find a vertex-disjoint augmenting path from u
9: if P found then

10: path found ← 1
11: M ← M ⊕ P � Augment the matching with the path found
12: until path found = 0 � Repeat until no augmenting paths exist

Algorithm 2 Find a vertex-disjoint augmenting path using DFS with lookahead in a threadsafe way. Input: A graph G, a

source vertex u, a matching M , vectors visited and lookAhead. Output: An augmenting path P if found.

1: procedure DFS-LA-TS(u)
2: for all v ∈ adj[u] starting at lookAhead[u] do � Lookahead step
3: lookAhead[u] ← next neighbor of u � Set to ∅ if v is the last neighbor
4: if v is not matched then
5: if Atomic-Fetch-Add(visited[v], 1) = 0 then � First thread to reach v in the lookahead step
6: return v � Treat path ending at v as an augmenting path.
7: for all v ∈ adj[u] do � DFS step. For fairness, alternate search directions in odd and even iterations
8: if Atomic-Fetch-Add(visited[v], 1) = 0 then � First thread to reach v in vertex-disjoint DFS
9: index ← DFS-LA-TS(M(v)) � Recursive call to continue DFS from mate of v

10: if index != invalid then return index
11: return invalid

Algorithm 3 Find a vertex-disjoint augmenting path using DFS in a threadsafe way. Input: A graph G, a source vertex u, a

matching M and a vector visited. Output: An augmenting path P if found.

1: procedure DFS-TS(u)
2: for all v ∈ adj[u] do
3: if Atomic-Fetch-Add(visited[v], 1) = 0 then � First thread to reach v
4: if v is unmatched then
5: return v
6: else
7: index ← DFS-TS(M(v)) � Recursive call to continue DFS from mate of v
8: if index != invalid then return index
9: return invalid

Algorithm 4 The Parallel Hopcroft-Karp Algorithm.

Input: A graph G. Output: A maximum matching M .
1: procedure PHK(G(X ∪ Y,E))
2: M ← InitMatch(G) � E.g., Karp Sipser
3: repeat � Each iteration
4: for all u ∈ X do
5: next[u] ← first neighbor of u
6: for all w ∈ X ∪ Y do
7: visited[w] ← 0 � visited is set to false.
8: P ← ∅
9: (GL, Lk) ← LAYERED-GRAPH-TS(G,M) � Construct layered graph from all unmatched vertices

10: for all w ∈ X ∪ Y do
11: visited[w] ← 0 � visited is reset to false for DFS-TS.
12: for all v ∈ Lk \ V (M) in parallel do � Unmatched vertices in last level
13: Pv ← DFS-TS(v) � Find augmenting paths using DFS in GL

14: P ← P ∪ Pv

15: M ← P⊕M
16: until P = ∅ � No augmenting paths exist

871871

Algorithm 5 Construction of the layered graph in parallel. Input: A graph G(X ∪ Y,E) and a matching M . Output: A

layered graph GL and a set Lk ⊂ Y .

1: procedure LAYERED-GRAPH-TS(G(X ∪ Y,E),M, visited)
2: P ← ∅
3: L0 ← unmatched vertices in X
4: k ← 0
5: while true do � Level-synchronous BFS to find shortest augmenting paths
6: Lk+1 ← ∅ � Will consist of vertices from Y
7: Lk+2 ← ∅ � Will consist of vertices from X
8: for all u ∈ Lk in parallel do
9: for all v ∈ adj[u] do

10: if Atomic-Fetch-Add(visited[v], 1) = 0 then � First thread to visit vertex v
11: Add vertex v to layer k + 1 locally in a thread � Thread-private vector of vertices
12: Add edge {u, v} to the local set of edges � Thread-private vector of edges
13: if v ∈ V (M) then � If vertex v is matched, add the next layer
14: Add vertex {M [v]} to layer k + 2 locally in a thread
15: Add edge {v,M [v]} to local set of edges
16: Concatenate local layers k + 1 and k + 2 from all threads to Lk+1 and Lk+2

17: Concatenate local edges from all threads to E(GL)
18: if (Lk+1 = ∅) OR (Lk+1 \ V (M) �= ∅) then � Last level is either empty or we have found an unmatched vertex
19: GL ← {(⋃0≤i≤k+1 Li, E(GL)}
20: return (GL, Lk+1) � Augmenting paths do not exist if Lk+1 is empty
21: else
22: k = k + 2 � Proceed to construct the next two levels

Algorithm 6 The Parallel Karp-Sipser Algorithm.

Input: A graph G. Output: A maximal matching M .
1: procedure PARALLEL-KARP-SIPSER(G(X ∪ Y,E))
2: M ← ∅
3: Q1 ← ∅
4: Q∗ ← ∅
5: for all u ∈ X ∪ Y in parallel do
6: visited[u] ← 0 � visited[u] is set to false.
7: for all u ∈ X in parallel do
8: if deg[u] = 1 then
9: Q1 ← Q1 ∪ {u} � Add vertices of degree=1 in Q1 and remaining to in Q∗

10: else
11: Q∗ ← Q∗ ∪ {u}
12: for all u ∈ Q1 in parallel do
13: MATCHANDUPDATE(G,M, u, visited) � Match degree=1 vertices, update degrees, and look for new degree=1 vertices
14: for all u ∈ Q∗ in parallel do
15: MATCHANDUPDATE(G,M, u, visited) � Match a higher degree vertex, update degrees, and look for new degree=1 vertices
16: return M

Algorithm 7 Match a vertex if possible and process its neighbors. Input: A graph G, a matching M , a source vertex u, and

a vector visited.
1: procedure MATCHANDUPDATE(G,M, u, visited)
2: if Atomic-Fetch-Add(visited[u], 1) = 0 then � First thread to visit unmatched u
3: for all v ∈ adj[u] do
4: if Atomic-Fetch-Add(visited[v], 1) = 0 then � First thread to visit unmatched v
5: M ← M ∪ {u, v} � Found a mate for u
6: for all w ∈ adj[v] do
7: if Atomic-Fetch-Add(deg[w],−1) = 2 then � Update the degree of neighbors of v
8: MATCHANDUPDATE(G,M,w, visited) � Recursive call to match the new vertex w of degree=1
9: break � Stop search when u gets matched

872872

